
3880 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 6, JUNE 2021

Formal Design of Multi-Function
Vehicle Bus Controller

Yu Jiang , Mingzhe Wang , Zhuo Su , Yixiao Yang, and Huihui Wang , Senior Member, IEEE

Abstract— Data of the train communication network(TCN) is
becoming more complicated, which results in higher require-
ments of the data processing unit-the multifunction vehicle
bus controller (MVBC) connected within the TCN. Devel-
oping an MVBC is challenging because of the integrated
hardware-software solutions to support reactions in real time
and dynamic environment. Hence, there is an urgent need for
a rigorous design framework to facilitate the development of
MVBC. In this paper, we propose a design framework TooMVBC
to generate executable MVBC code from formal verified com-
putation model. TooMVBC uses formal computation model
MVBChart to capture the specification of the MVBC at high level.
First, primitive syntax of MVBChart is designed to model MVBC
features (e.g. hierarchy structure, data flow of the encoder,
the control logic of communication protocol), and semantics of
MVBChart is formalized for simulation and verification. Then,
semantics-preserving code generation algorithms are designed to
generate VHDL code for partitioned hardware implementations
and C code for partitioned software implementations from
verified MVBChart model. The generated code can be loaded
into the proposed flexible MVBC hardware architecture directly.
Finally, supporting graphical model editor, simulator, verification
translator, partitioning and code generator are implemented
and seamlessly integrated into TooMVBC. When we apply
TooMVBC to design MVBC with the highest class 5 according
to the description of the standard IEC 61375, several critical
ambiguousness or bugs in the standard are detected during
formal verification of the constructed system model.

Index Terms— Model-driven design, formal computation
model, vehicle bus controller (VBC).

I. INTRODUCTION

THE train communication network (TCN) was standard-
ized in the international standard IEC 61375 [4] and

adopted in most modern train control systems. For example,
the data processing unit MVBC D113 developed by Duagon
company complies to this standard and supports leading train
communication and control for the world market.

Manuscript received April 22, 2020; revised September 12, 2020; accepted
October 14, 2020. Date of publication May 20, 2021; date of current
version June 2, 2021. This work was supported in part by the National
Key Research and Development Project under Grant 2019YFB1706200 and
Grant 2018YFB1703404, in part by the NSFC Program Grant 62022046,
Grant U1911401, and Grant 61802223, and in part by the Huawei-Tsinghua
Trustworthy Research Project Grant 20192000794. The Associate Editor for
this article was Z. Lv. (Corresponding author: Zhuo Su.)

Yu Jiang, Mingzhe Wang, Zhuo Su, and Yixiao Yang are with the
Key Laboratory for Information System Security, Ministry of Education
(KLISS), Beijing National Research Center for Information Science and
Technology (BNRist), School of Software Engineering, Tsinghua University,
Beijing 100084, China (e-mail: jiangyu198964@126.com; suz18@mails.
tsinghua.edu.cn).

Huihui Wang is with the Department of Engineering, Jacksonville
University, Jacksonville, FL 32211 USA.

Digital Object Identifier 10.1109/TITS.2021.3078372

As an important part of the TCN, the multifunction
vehicle bus controller (MVBC) is responsible for the data
communication of all on-board equipment within a vehicle.
With the higher requirement of the modern high-speed train,
the functional complexity of the MVBC has increased from
the class 1 to class 5 to support the increasing requirements,
which results in more difficulties to ensure the correctness of
the MVBC. Once the MVBC is deployed after system test,
the train will have to work almost fully autonomously without
further interactions for a long period of time. This means even
small mistakes may have severe consequences, even for train
crashes and lives lose. Although there are many existing works
introducing how to design and implement an MVBC [11],
[12], [16], [18], [20], [22], most of them focus on the manual
functional implementation and do not pay attention to safety
assurance under dynamic physical environment.

Besides, from the perspective of industrial practice, mixed
hardware-software solutions are gaining increasing popularity
in real-world reactive applications of safety-critical domains
such as aerospace, so as transportation. The most widely
used MVBC D113 adopts this implementation manner, where
some components are implemented in hardware to ensure
determinacy and stability, while others without strict tim-
ing and performance constraints are usually implemented in
software to save computation resource. This implementation
pattern leads to an increasing heterogeneity, which brings more
difficulties in designing and validating MVBC.

In this paper, we propose a formal design framework named
TooMVBC with a formal basis, MVBChart computation
model, to address the safety design of MVBC and guarantee a
high reliability of the safety-critical train applications. Overall
structure of the design environment is presented in Fig 1, and
details are briefly outlined below.

The theoretical basis of TooMVBC is a formal model
of computation referred to as MVBChart. In this co-design
model, hierarchical structure and data flow of MVBC such as
encoder and decoder, and dynamic environment are captured
by compound and atom blocks with data port connections.
Functional requirements and control oriented communication
protocol of each component are expressed by parallel automata
contained in atom block. To strengthen the analytical ability
of the computation model MVBChart, we formalize rules
for interpreting the model into a labelled transition system
(LTS), which can be directly analyzed and verified by a formal
verifier, Beagle [5]. Furthermore, we propose resource-saving
code generation algorithms to generate VHDL code for blocks
assigned to hardware implementation, and C code for assigned

1558-0016 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0001-7083-2038
https://orcid.org/0000-0002-4098-5313
https://orcid.org/0000-0002-2153-6766

JIANG et al.: FORMAL DESIGN OF MULTI-FUNCTION VEHICLE BUS CONTROLLER 3881

Fig. 1. Overview of the TooMVBC design framework.

software implementation, after customized automatically
partitioning.

Based on the integrated design framework TooMVBC, we
are able to shorten the development cycle to build and validate
a MVBChart model at a high level, compared to the traditional
practice which involves implementing the sketch-like design of
MVBC in low-level programming languages as C and VHDL.
In addition, the graphical model validation through simulation
and enhanced formal verification opens a user-friendly inter-
face for us to uncover design defects at the early development
stage. Once we have verified safety-critical properties over
the system model and iteratively improved the design details,
executable code can be directly generated in C(software) and
VHDL(hardware) after partitioning.

Furthermore, when we apply TooMVBC in the design of
MVBC standardized by IEC 61375 [4], two critical bugs in
the standard are detected and confirmed via modeling and val-
idation with formal verification. Another significant strength
is a better performance to manage the size of synthesized
implementation than other VHDL and C code generators in the
literature. The automatically co-synthesized implementation
based on the bug-free model passes all physical tests, and has
been deployed in real-world subways.

II. RELATED WORK

During the past decades, many scientists have paid many
efforts to the design and implementation of the MVBC [7],
[12], [16], [18], [20]. In [7], they propose to use materialization
of slave nodes for MVBC in a single chip by using reconfig-
urable logic. In [12], [18], they propose to use some existing
tools such as Simulink to help implement the MVBC, which is
starting from model construction and ending in programming
according to the validated model. Most of them focus on the
functional implementation and do not pay attention on safety
assurance under dynamic physical environment. Although
many researchers have defined several types of formal seman-
tics for Stateflow, and developed many specialized tools for
translating subsets of model to pushdown automata, Lustre,
PAT, and timed automata, which can be verified through
the corresponding supporting tools [9], [21], most of them
performs well within their own domain while abstracting some
domain unrelated modeling features. For example, in timed
automata based translation, they translate the common features

such as timed operator, while the embedded M function code
are out of their considerations. Besides, there are also some
works about verifying the real time communication protocol
of TCN [8], [11], [13]–[15], [24], they describe some formal
methods to verify safety properties of the communication
protocol used in train control system. But they do not deal with
the co-design issue of hardware-software controlled behaviors
of MVBC and they do not cope with the implementation
issue neither, they focus on the logic correctness of train com-
munication protocol only. Furthermore, all works above are
incapable of handling the analysis or design of complex soft-
ware implementation of message communication of class 5.
The engineers from the industrial sources (the Duagon com-
pany, the China CR corporation) report that their MVBC is
developed by directly writing underlying C and VHDL code
manually, where there are still some currently unimportant
bugs.

Except for the above work for MVBC, there are large
amounts of work and various toolkits in the literature support-
ing the design of general synchronous reactive systems [17],
[23]. For example, SCADE [3] uses SSM as the formal basis,
and has been successfully applied in a variety of applications
with 20,0000 US dollars for a single license. While mainly
focusing on embedded software, SCADE currently has little
support for the synthesis of hardware.

For MVBChart, we mainly eliminate the hieratical state,
the composite state, during action, entry action, exit action,
junction operator, M function of Stateflow, the weak abortion,
strong abortion, signal communication, the composite state
of SCADE. In the synchronous system design domain, those
advanced features can be interpreted by the basic data port
communication port, parallel automata, embedded C function,
atom block and compound block of MVBChart.

III. THEORETICAL BASIS

In this section, we introduce theoretical basis of TooMVBC,
including the construction of MVBChart computation model,
semantics interpretation, formal semantics for verification, and
co-synthesis mechanism.

A. MVBChart Parallel Computation Model

In MVBChart computation model, an MVBC is specified as
a combination of compound and atom blocks communicating

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

3882 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 6, JUNE 2021

through point-to-point channels. The compound block does
not directly conduct computation. Instead, it presents the
hierarchical decomposition of general component (encoder,
decoder, counter, master frame, etc.) structure and data flow
path among them. The atom block is refined as parallel
automata to capture the behaviors and detail computation such
as the logic to generate a master frame or the computation
to decode a communication frame. The complete rules and
general domain features can be referred to the manual, based
on which, we present its underlying formal tuple definitions
for simulation and verification:

1) Automaton: An automaton Ci is defined as a tuple
〈L, l0, V , G, A, E, P〉, where L is a set of locations {li |i ∈
[0, n]}, l0 is the initial location {l0|l0 ∈ L}, V is a set
of parameters {vi |i ∈ [0, n]} inherited from local variables,
input data ports, and output data ports of the parent atom
block, A is a set of actions {ai |i ∈ [0, n]}, G(V) is a
set of guards {gi(V)|i ∈ [0, n]},1 E is a set of transition
edges {ei ⊆ L × G(V) × A × L|i ∈ [0, n]} between
two locations with the attached action and guard, P is a
set of priority valuation function {pi ⊆ ei < e j |i, j ∈
[0, n], ei and e j star t f rom the same source state} defined
on the edges that may take simultaneously.

2) Atom Block: An atom block abi is defined as a tuple
〈I, O, V , C〉, where I is a set of input data ports {Ii |i ∈
[0, n]}, O is a set of output data ports {Oi |i ∈ [0, n]}, V is a
set of local variables {vi |i ∈ [0, n]}, and C is a set of automata
{Ci |i ∈ [1, n]}.

3) Compound Block: A compound block cbi is defined as
a tuple 〈I, O, B, W, F〉, where I is a set of input data ports
{Ii |i ∈ [0, n]}, O is a set of output data ports {Oi |i ∈ [0, n]}, B
is a set of sub-atom blocks {abi |i ∈ [0, n]} and sub-compound
blocks {cb j | j ∈ [0, n]}, W is a set of point-to-point channel
connections {wi ⊆ port × port|port ∈ {M.I ∪M.O ∪ B.I ∪
B.O} among the data ports within this compound block, and
F is a set of expressions { fi |i ∈ [0, n]} attached on the
connection.

4) MVBChart: A MVBChart computation model M is
defined as a tuple 〈C B, T 〉, where C B is the outermost
compound block, and T is the synchronous trigger for com-
putation. In fact, MVBChart model can be represented by the
outermost compound block.

Based on the tuple definitions, we have built 36 general
modules (master frame, slave frame, decoder, encoder, pool
ram control, counter etc.) that can be reconfigured to model
different types of MVBC.

B. Model Interpretation for Simulation

According to the definition of IEC standard 61375, MVBC
is a typical synchronous reactive system, which is triggered
by a periodic clock. In context of synchronous systems,
the system reaction step, mainly involves in three phases:
import inputs, compute changes and export outputs. In the
semantics of MVBChart, it should adhere to the reactions of
real system and calculations of MVBChart model are based

1ai and gi (v) are statements supported in C. The partially supported part
can be referred to the cited manual.

Algorithm 1: Computation of Atom Block, Which Is
Further Refined to Computation of Automata

Input: all atom blocks abi contained in MVBChart
parallel computation model M .

Output: The configuration Ci of each atom block.
// Compute the configuration for each

atom block abi in parallel.
1 foreach atom block abi ∈ MVBChart M do

// Read the initial configuration of
abi: the input data ports, local
variables, and active states.

2 pi _temp []← pi [];
3 vari _temp []← vari [];
4 ActiveStatei _temp []← ActiveStatei [];

// Do parallel computation on each
automaton contained in abi based on
the initial configuration.

5 foreach automaton C j
i ∈ the atom block abi do

// Select all transitions starting
from the current active state
ActiveStatei_temp [].

6 T rans j
i _temp []←

Get_T rans(C j
i .E, ActiveStatei _temp [j]);

// Sort the selected transitions
according to the priority.

7 T rans j
i _temp []← Sort (Trans j

i _temp [] , C j
i .P);

// Trigger the transition with the
highest priority

8 foreach transition ∈ T rans j
i _temp [] do

9 if Guard of T rans j
i _temp [k] is true then

10 if Action a j
i is not conflict then

11 (pi _temp [] , vari _temp [] ,
ActiveStatei _temp [])

12 ←
13 Action(Trans j

i _temp [k] , pi _temp [] ,
vari _temp []);

14 break ;
15 else
16 Conflict Error Wraning;

// Return the configuration of the
atom block abi: Output data ports,
local variables and active states

17 p j []← p j _temp [];
18 vari []← vari _temp [];
19 ActiveStatei []← ActiveStatei _temp [];

on initial status at the start of current step. This semantics
liberate engineers from the puzzle of causality error during
the model construction. Also, the synthesized VHDL code
with this semantics solves the meta-stability problem in the
same way as Moore machine.

Given those basic tuple definitions in the previous section,
basic step computation of MVBChart can be interpreted as

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FORMAL DESIGN OF MULTI-FUNCTION VEHICLE BUS CONTROLLER 3883

the configuration computation that the next active state, values
of output data ports and local variables. As presented in
Algorithm. 1, the step computation semantics is as follows:

1. First, when a new computation step starts, the model
should import inputs from the environment through
input data ports {C B.I} of the outermost model M .
It will read their values, and pass the values through
connections until endpoint arrives, which is input data
ports {abi .I} of the innermost atom blocks.

2. Then, all atom blocks abi will read updated value
from input data ports and local variables, as presented
in statements 2-4 of algorithm 1. The automata {C j

i }
contained in each atom block will determines the next
state, values of output data ports and local variables in
parallel, as presented in statements 5-16. Because within
an automaton, there may be several transitions starting
from a source state with their guard satisfied, we need to
choose transition with the highest priority, as presented
in statements 6-7. Also, because all automata {C j

i } are
executed in parallel and independent of each other, and
there might be conflicts on read-write operations. Each
local variable and output data port can only be written
by one automaton. If there are two enabled transitions
em and en , from the automaton Cm

i and Cn
i of atom

block abi respectively, and their attached actions am

and an attempt to update the same local variable or
output data port, a conflict is reported, as presented
in statement 10 and 16. After the recursive execution
finishes, new configuration will be returned, as presented
in the statements 17-19.

3. Finally, at the end of each computation step, returned
value of output data ports should be passed through
connections to the endpoints, which are input data ports
{abi .I} of another atom block, or output data ports
{C B.O} of the outermost block M . The former is used
for the next computation step, and the latter is used for
exporting outputs to outside environment.

C. Formal Semantics for Verification

Formal semantics of MVBChart is determined by its equiv-
alent labeled transition system (LTS) [6], based on which,
we can formalize decision problem of MVBChart in the
same way as [1], and input it to Beagle for verification
directly. An LTS is defined as a tuple 〈S, s0,→, A〉, where
S is a set of states {s0, s1, · · · , sn}, A is a set of actions
{a0, a1, · · · , an},→⊆ S× A× S is a set of transitions, and
s0 is the initial state. For any state si and action ai , if there is
only one transition si

ai→ si+1 contained in the transition set
→⊆ S×A×S, the LTS is called as deterministic. Following
description style of LTS in [8], the equivalent LTS can be
constructed bottom-up, starting from the parallel automaton Ci

to the outermost MVBChart model M .
1) LTS for Automaton: Let 〈L, l0, V , A, E, P〉 be an

automaton Ci as defined in the section III-A. U is a set of
parameter valuation functions {ui ⊆ V ∪ T → B ∪ N |i ∈
[0, n]} from the parameters to bool or integer, where T is the
trigger.

Semantics of the automaton Ci can be defined as a labeled
transition system 〈S, s0,→, A〉, where S is a set of configura-
tion {si = (li , ui) ⊆ C.L×U(C.V)|i ∈ [0, n]}, s0 = (l0, u0) is
the initial configuration, A is a set of action {ai ⊆ Ci .A | i ∈
[0, n]} and →⊆ S × A × S is the transition rule for an
automaton reaction step such that:
{(l, g, a, l ′)|max{p(ei)|g(v) = true}}
= ∅∧

g(T) = true

(l, u)
a−→ (l ′, u′)

{(l, g, a, l ′)|max{p(ei)|g(v) = true}} = ∅∧
g(T) = true

(l, u)
∅−→ (l, u′)

where each automaton is allowed to take the transition with the
highest priority (rule 1), or staying in the current state (rule 2).
For each execution, the clock T will increase with a minimum
� t to break the guard g(T ′), so that the next execution will
be enabled on the next period of clock T . These rules break
the output from the internal input changes through the clock,
similar to the rules of Moore machine.

2) LTS for Atom Block: Let 〈I, O, V , C〉 be an
atom block abi as defined in section III-A, consist-
ing of n parallel automata

⋃n
i=1 Ci . Automata Ci equals

〈Li , li
0, V i , Gi , Ai , Ei , Pi 〉, where V i ⊆ I∪O∪V is inherited

from the atom block. Then, location set L for the atom block
is defined as {li = (l1

i , l2
i , · · · , l j

i , · · · , ln
i) ⊆ (L0 × L1 · · · ×

Ln)| j ∈ [0, n], l j
i ∈ L j }, and l0 equals (l1

0 , l2
0 , · · · , ln

0).
Action set A is defined as {ai = (a1

i , a2
i , · · · , a j

i , · · · , an
i) ⊆

(A0 × A1 · · · × An)|i ∈ [0, n], a j
i ∈ A j }. Parallel evaluation

function U is defined as {ui = (u1
i , u2

i , · · · , u j
i , · · · , un

i) ⊆
(U0 × U1 · · · × Un)| j ∈ [0, n], u j

i ∈ U j }, where U j is the
parameter evaluation function {u j

0, u j
1, · · · , u j

n} defined for
automaton C j , and {u j

i ⊆ (V j ∪ T ← B ∪ N)|i ∈ [0, n]}. The
initialization u0 equals (u1

0, u2
0, · · · , un

0).
Semantics of the atom block abi can be defined as a

labeled transition system 〈S, s0,→, A〉, where S is the set
of configuration {si = (l i , ui) ⊆ L × U |i ∈ [0, n]}, s0 =
(l0, u0) = ((l1

0 , l2
0 , · · · , ln

0), (u1
0, u2

0, · · · , un
0)) is the initial

configuration, A is a set of action {ai = ai ⊆ A | i ∈ [0, n]}
and →⊆ S × A × S is the transition rule for an atom block
reaction such that:

g(T) = true

(l, u)
a−→ (l ′, u′)

where the compound transition can be refined to the transi-
tion of each automaton C j . ∀ j ∈ [1, n], (l.l j , u.u j) is the
configuration of C j , and T j is inhered from T to ensure
synchronization among different automata, as shown at the
bottom of the next page.

3) LTS for Compound Block: Let 〈I, O, B, W, F〉 be a
compound block cbi as defined in section III-A, consisting of
several sub-atom and sub-compound blocks. The compound
block can be re-flattened as 〈I, O, B ′, W ′, F ′〉, where B ′ =
{⋃n

i=1 abi |i ∈ [0, n]} is a set of all atom blocks in bottom
level, W ′ = {w′i ⊆ port × port|port ∈ {cbi .I ∪ cbi .O ∪
B ′.I ∪B ′.O}} is a set of all flatted connections among the data
ports of atom block in the bottom level and data ports of the
outermost compound block cbi , and F ′ = { f ′i |i ∈ [0, n]} is a

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

3884 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 6, JUNE 2021

set of cascaded expressions attached on the flatted connection.
Then, location set C L for the compound block is defined
as {cli = (li

1
, · · · , li

j
, · · · , li

n
) ⊆ (L

0 × L
1 × · · · × L

n
)|

j ∈ [0, n], li
j ∈ L

j
, L

j = (L0 × L1 · · · × Ln)}, where L
j

is the location set for the atom block abi of B ′. The initial
location vector cl0 equals (l

1
0, · · · , l

n
0). The action set C A is

defined as {cai = (ai
1, · · · , ai

j , · · · , ai
n) ⊆ (A

0× A
1×· · ·×

A
n
)| j ∈ [0, n], ai

j ∈ A
j
, A

j = (A0 × A1 × · · · × An)}.
The parallel evaluation function vector CU is defined as
{cui = (ui

1, · · · , ui
j , · · · , ui

n) ⊆ (U
0 × U

1 × · · · × U
n
)|

j ∈ [0, n], ui
j ∈ U

j
, U

j = (U0×U1 · · ·×Un)}, where U
j

is
a set of valuation function vector defined on atom block abi

of B ′, and the initialization cu0 equals (u1
0, u2

0, · · · , un
0).

Semantics of the compound block cbi is defined as a
labelled transition system 〈S, s0,→, A〉, where S is the of
configuration {si = (cli , cui) ⊆ M L × MU |i ∈ [0, n]}, s0 =
(ml0, mu0) = ((l

1
0, l

2
0, · · · ln

0), (u
1
0, u2

0, · · · un
0)) is the initial

configuration, A is a set of action {ai = cai ⊆ C A | i ∈ [0, n]}
and transition →⊆ S × M A × S is the transition rule for a
compound reaction step such that:

g(T) = true

(ml, mu)
ma−→ (ml ′, mu′)

where the compound transition can be refined to the
sub-compound transition of each atom block abi of B ′.
∀i ∈ [1, n], (ml ′.li

, mu′.ui) is the configuration of abi , and
∀(port1 × port2) ∈ W ′ is the flatted connection with the
cascaded expression f ′i :

g(T) = true

(ml ′.li
, mu′.ui)

ma.ai−→ (l
i ′
, ui ′)

∧
u(port2)

f ′i→ u′(port1)

4) LTS for MVBChart Model: As defined in section III-A,
a MVBChart parallel computation model M is defined as a
tuple 〈C B, T 〉, where C B is the outermost compound block,
and T is the synchronous trigger for computation. Hence,
the labelled transition system of MVBChart model is the same
as the definition for the outermost compound block.

D. Co-Synthesis of MVBChart to MVBC

Generally speaking, the MVBChart model and the MVBC
do not pose any constraints on architecture or programming
language for implementation. It is desirable to keep the
features of the hierarchical structure, parallel processing, and
data flow of modern MVBC in the hardware and software
implementations, automatically. As presented in the Fig. 2,
we propose a platform including two processing units: an
ARM (Advanced RISC Machines) processor for software

Fig. 2. Flexible architecture for the code synthesis from MVBChart model
to MVBC system.

modules and an FPGA (Field Programmable Gate Array)
processor for hardware modules. The communication is real-
ized via the connection between the pins of FPGA to the GPIO
(General Purpose Input/Output) of ARM.

1) Software-Hardware Partitioning: Noting that many effi-
cient partitioning algorithms have been proposed in the
last decades, we can customize existing algorithms into
TooMVBC, and focus more on the design of modeling,
simulation, co-verification and code generation. To the best
of our knowledge, this is the first time to customize and
implement the partitioning task into a design framework,
and we incorporate the most recently developed partitioning
algorithm directly [10].

The key idea is to custom each atom block of MVBChart
as a node in the partitioning algorithm and find a bipartition P
on a communication graph denoted as G(V , E), where V is
a set of nodes {v1, v2 · · · vn} and E is a set of edges {ei j |1 ≤
i, j ≤ n}, and P = (Vh, Vs) such that Vh

⋃
Vs = V

and Vh
⋂

Vs = ∅. Then, the partitioning problem can be
decided by a decision vector x(x1, x2 · · · xn), representing
implementation way of n task modules. When the value of
xi is 0 (1), the task module will be implemented in hardware
(software). Objective of the problem is changed to search an
n-dimensional space to find the optimal value of the decision
vector on the objective function of hardware cost H (x) and
time constraints T (x) as below:

P0 :

⎧⎪⎨
⎪⎩

minimizeH (x)

subject toT (x) ≤ M

x ∈ {0, 1}n
(1)

Accompanied with the partitioning algorithm, we provide
more flexibility for the implementation of MVBC according to
different partitioning strategies on time and resource. Noting
that many partitioning algorithms have been proposed in the
last decades, which is not the main concern and contribution of

{(l j , g j , a j , l j ′)|max{p(e j
i)|g j (v) = true}}
= ∅∧

g(T j) = true

(l.l j , u.u j)
a.a j−→ (l j ′, u j ′)

{(l j , g j , a j , l j ′)|max{p(e j
i)|g j (v) = true}} = ∅∧

g(T j) = true

(l.l j , u.u j)
∅−→ (l j , u j ′)

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FORMAL DESIGN OF MULTI-FUNCTION VEHICLE BUS CONTROLLER 3885

Fig. 3. Synchronization of parallel threads.

this work, and we use our previous algorithms for partition-
ing [10]. It proposes a heuristic based on genetic algorithm
and simulated annealing to solve the problem near-optimally,
even for quite large systems. Based on the predefined libraries
consisting of 36 general modules of MVBC domain, we
can package the graphical MVBChart model for different
MVBC classes easily with the addition of some basic modeling
primitives. This changes the development into a more flexible
style.

2) Software Synthesis: For software synthesis, previous
work such as in [2], [19] usually flat their model and generate
a single C function for the flatted model, which has no
structure information and the code cannot be traced back to the
original model. This is very difficult for the understanding and
further update of developer. To overcome this inconvenience,
we keep the structure and traceability and implement a more
user friendly synthesis algorithm. We use C sub-function
call to capture the compound block, and C statement of
thread definition to capture the automata contained in atom
block. Because the automata contained in the innermost atom
block are running in parallel and synchronized with clock,
thread for each automaton needs to be synchronized with the
barrier, and we implement the dynamic barrier in two files
named timer.h and timer.c, as the synchronization scheduler
of all threads. Correlation between thread implementation and
scheduler function is presented in Fig 3.

In the file timer.h, variable totalthreads is used to denote
the number of threads for all automata, onephaserealthreads
denotes the number of threads that are not in the scheduler,
and prephasecleared is used to control synchronization stage
of all threads. In order to avoid operation conflicts on those
variables, a system critical resource sync_section is declared
to ensure exclusive access. Function declarations void regist()
and void GetOnePhasePermission() are used for thread
registration and synchronization, respectively.

In the file timer.c, function void regist() and void
GetOnePh asePermission() are implemented on system
access function to help to keep the timing consistency of
all parallel threads. When thread for each automaton starts,
thread register function void regist() is called to revise the
number of total threads, and the number of threads that
have not entered synchronization function. The consistency
scheduler function void GetOnePhasePermission() is called
multiple times during execution of threads. There are two
while loops contained in the scheduler function, where the first

Listing 1. The header file timer.h for the scheduler.

Listing 2. The registration entrance in the file timer.c.

Listing 3. The consistency scheduler in the file timer.c.

is used to ensure that all threads have entered, and the second
is used to ensure that all threads are synchronized to go
out of suspension. In this way, all threads are dynamically
synchronized to the system reaction step of importing inputs,
updating changes and exporting outputs.

For the atom block abi , based on the element definition of
atom block and the function interface contained in scheduler
timer.c, synthesis engine parses those elements to get software
description as below, with details presented in algorithm 2:

1. Interface Definition. Generate the variable declaration
in header file from input ports {Ii |i ∈ [0, n]} and output
ports {Oi |i ∈ [0, n]} of atom block abi .

2. Type Generation. Generate the type declaration in
header file for each automaton {Ci |i ∈ [1, n]} of atom
block abi , and the location set {li |i ∈ [0, n]} of the
automaton is value space of the generated type. Based on
the type, variable for state is declared. An accompanied
variable for each local variable {vi |i ∈ [0, n]} and output
data port is declared for parallel calculation and update.

3. Thread Construction. Generate a thread for each
automaton 〈L, l0, V , A, E, P, T 〉 servicing value com-
putation and state transition. First, we add the void
regist() function call into thread. Then, the thread is
divided into three segments in reaction manner: (1) read
the variables declared for local variables and input
data ports, (2) calculate the value of state and

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

3886 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 6, JUNE 2021

variables within the SWITCH statement, where different
transitions {ei |i ∈ [0, n]} starting from a state can be
captured by the IF-ELSE statement inside a branch
of CASE. Along with the use of accompanied signal,
implementation avoids the side effects of sequential
statements in C to ensure that value used for computation
is the initial value of each step, (3) update the variables
declared for local variables and output data ports. Before
the implementation code of each segment, we add the
function call of void GetOnePhasePermission() for
global synchronization of all threads, and the function
call of sleep() for synchronization between hardware and
software.

The software implementation for the compound block is
almost the same, with interface generation and function call
generation of each sub-compound block or atom block. For the
compound block cbi , it is defined as a tuple 〈I, O, B, W, T 〉,
where I is a set of input data ports {Ii |i ∈ [0, n]}, O is a set of
output data ports {Oi |i ∈ [0, n]}, B is a set of sub-atom blocks
{abi |i ∈ [0, n]} and sub-compound blocks {cb j | j ∈ [0, n]}.
The synthesis engine parses those elements to get software
description as below, with details presented in algorithm 3:

1. Interface Definition. Generate the variable declaration
in header file from input data ports {Ii |i ∈ [0, n]} and
output data ports {Oi |i ∈ [0, n]} of compound block cbi .

2. Function Call Generation. Declare sub-function call
for each atom block {abi |i ∈ [0, n]} and sub-compound
block {cb j | j ∈ [0, n]} of cbi .

3) Hardware Synthesis: In terms of hardware synthesis
framework, we use the architecture description code of com-
ponent map in VHDL to capture the compound block, and
the behavior description code of process definition in VHDL
to capture the automata contained in atom block. The core
synthesis algorithm for them is similar to the implementation
algorithm presented in our previous work [8],.

For the atom block abi contained in the selected block,
it is defined as a tuple 〈I, O, V , C, T 〉, where I is a set
of input data ports {Ii |i ∈ [0, n]}, O is a set of output
data ports {Oi |i ∈ [0, n]}, V is a set of local variables
{vi |i ∈ [0, n]}, C is a set of automata {Ci |i ∈ [1, n]} refined
as a tuple 〈L, l0, V , A, E, P, T 〉. The synthesis engine parses
those elements to get hardware description as below:

1. Interface Definition. Generate the port declaration in
the ENTITY definition of VHDL module, from input
data ports {Ii |i ∈ [0, n]} and output data ports {Oi |i ∈
[0, n]}. The bool type needs to be changed to std_logic,
and integer needs to be changed to ranged integer type
of VHDL for more efficient synthesis.

2. Type Generation. Generate the type declaration of
VHDL module for each automaton {Ci |i ∈ [1, n]}, and
location set {li |i ∈ [0, n]} of the automaton is the value
space. Based on the type, two accompanied signals used
in process construction are declared for current active
state and next active state. Two accompanied signals
for each local variable {vi |i ∈ [0, n]} are declared for
calculation, and an accompanied signal for each output
data port {Oi |i ∈ [0, n]} is declared for update.

Algorithm 2: Thread Implementation for Each Automaton
Contained in Atom Block

Input: All parallel automata Ci contained in the atom
block abi .

Output: The threads for each automaton.
1 StringBuilder buffer = new StringBuilder();
// Generate a thread for each automaton
// Each thread is divided into three

steps: read, computation, output.
Each step needs to be synchronized
with all the other threads.

2 for Each automaton C j
i ∈ the atom block abi do

3 Append(buffer, void thread_abi_C j
i ());

4 Append(buffer, regist ()) ;
5 Append(buffer, DWORD start = timeGetTime()) ;

// The first step is for variable
assignment.

6 Append(buffer, Get OnePhasePermission()) ;
7 Append(buffer, steps 2 − 4 in algori thm 1) ;

// The second step is for the
automaton computation.

8 Append(buffer, Get OnePhasePermission()) ;
9 Append(buffer, CASE (state)) ;

10 for all state li ∈ L contained in a j
i do

11 Append(buffer, WHEN li) ;
// Select all transitions starting

from the state li

12 T rans_temp []← Get_T rans(E, li);
// Sort the selected transitions

according to the priority.
13 T rans_temp []← Sort (Trans_temp [] , P);
14 for each ei ∈ T rans_temp [] do
15 Append(buffer, I F g(ei)) ;
16 Append(buffer, U pdate(a(ei))) ;
17 Append(buffer, Destination(ei)) ;

// The third step is for the output
of data ports

18 Append(buffer, Get OnePhasePermission()) ;
19 Append(buffer, steps 20− 21 in algori thm 1);
20 Append(buffer, Get OnePhasePermission()) ;

// Optional: the system function sleep
is used to keep consistency with
the frequency of the hardware
execution timer

21 Append(buffer, DWORD End = timeGetTime()) ;
22 Append(buffer, sleep(H. f −�t)) ;

23 return buffer;

3. Process Construction. Generate the process construc-
tion for behavior in the style of two-stage. The first
main process is used for update of output data port,
state and variable, with corresponding accompanied sig-
nals. Then, the second process for value computation
and state transition is generated for each automaton
〈L, l0, V , A, E, P, T 〉. Each automaton can be captured

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FORMAL DESIGN OF MULTI-FUNCTION VEHICLE BUS CONTROLLER 3887

Algorithm 3: Implementation for Compound Block
Input: The compound block cbi

Output: The function for the compound block
1 StringBuilder buffer = new StringBuilder();
// Function for the compound block,

which is used to call each function
of the contained blocks.

2 buffer← Append(buffer, void cbi ());
3 foreach sub-atom block abi ∈ cbi do
4 buffer← Append(buffer, abi());

5 foreach sub-compound block cb j ∈ cbi do
6 buffer← Append(buffer, cb j ());

7 return buffer;

by a CASE statement of VHDL on the state sig-
nal {li |i ∈ [0, n]}. Transitions {ei |i ∈ [0, n]} and
corresponding priorities {pi ⊆ ei < e j |i, j ∈
[0, n], ei and e j star t f rom the same source state}
can be captured by the IF ELSE statement inside a
branch of WHEN. If action {ai |i ∈ [0, n]} has some
assignment operations, output data port and local vari-
able to be updated should be replaced with their accom-
panied signals.

For the compound block cbi contained in the selected block,
it is defined as a tuple < I, O, B, W, T >, where B is a set
of sub-atom blocks {abi |i ∈ [0, n]} and sub-compound blocks
{cb j | j ∈ [0, n]}, and W is a set of point-to-point channel
connections {wi ⊆ port × port|port ∈ {cbi .I ∪ cbi .O ∪
B.I ∪ B.O}. The synthesis engine parses those elements to
get the hardware description as below:

1. Interface Definition. Generate the port declaration in the
ENTITY definition of VHDL module from the input
data ports {Ii |i ∈ [0, n]} and output data ports {Oi |i ∈
[0, n]} of block cbi , which is obviously the same as the
interface definition of atom block.

2. Instance Generation. Generate the COMPONENT
instance for each sub-atom block {abi |i ∈ [0, n]} and
sub-compound block {cb j | j ∈ [0, n]} of cbi . The
COMPONENT instance declaration is the same as the
ENTITY definition, except that the keyword COMPO-
NENT is used to replace ENTITY.

3. Component Map. Generate the signal connection for
each COMPONENT instance defined in the previous
step according to the connection {wi ⊆ port1 × port2|
port1(2) ∈ {cbi .I ∪ cbi .O ∪ B.I ∪ B.O}}. There are
two types of connection. The first is that the port of the
instance is connected to the port {cbi .I ∪ cbi .O} of the
compound block cbi . In this case, the port is mapped to
the connected port directly. The second is that the port
of the instance is connected to the port {B.I ∪ B.O}
of other sub-atom and sub-compound blocks. In this
case, we need to generate a temporary signal for the
connection. are mapped to the temporary signal.

Based on the synthesis engines mentioned above, we
can generate C code and VHDL code of MVBC from

MVBChart model automatically, and the generated VHDL
files can be synthesized into FPGA processor with VHDL
ports mapped to FPGA pin, and the generated C files can
be compiled into ARM processor with C variables mapped
to ARM GPIO. Point-to-point channel communication is used
to generate the configuration file for the connection between
the pin of FPGA and GPIO of ARM. Furthermore, to keep
execution cycle consistency between the reaction of hardware
processor and the reaction of software processor, the frequency
of FPGA processor is used to initiate parameter of sleep()
function contained in the generated software, as presented the
algorithm 2. Currently, the correctness of the code generation
is mainly ensured through simulation and testing.

IV. EXPERIMENT RESULTS

We build the model with message data communication of
class 5, and analyze the whole MVBC model through graphi-
cal model simulation and verification. For formal verification,
the model is translated through verifier translator contained
in TooMVBC, and safety-critical properties are formulated as
logic assertions for message transfer, where four examples
are presented as below. The first two properties are about
data retransmission procedure and the last two are about data
acknowledgment procedure. The translated file with suffix.elts
and those properties are fed to the verifier Beagle for formal
verification.

[](RECEIVER.SEND_AK derive (AK==true))

[]((AK==true) derive (AK_number==next_send))

[](RECEIVER.SEND_NK derive (NK==true))

[]((NK==true) derive (NK_number==next_send))

Based on the verification outputs, unsatisfiable properties
are detected in the MVBChart model for message communi-
cation, where the information data transmission is unreliable.
In specific, the last two assertions are violated, which means
that two defects about the message retransmission are exposed.
Note that the violation is not easy to be detected in graphical
simulation because of the limitation of input patterns for
simulation. For example, the third assertion implies the sender
would not set the resend flag and the fourth means that the
resend data packet could be incorrect.

Through the counterexample presented in Beagle and man-
ual code review, we located violation for the third property in
atom block f rame_retransmission contained in compound
block message_service. An incomplete guard on a transition
leads to the bug. The bug can be backtracked to C statement
(expected < NK_number ≤ send_not_yet), which is located in
table 33 of the standard IEC 61375. The statement should
be changed to (expected ≤ NK_number ≤ send_not_yet).
Furthermore, corresponding physical problem of the bug is that
when source MVBC sends data packets for the first time and
the first packet is lost in the link layer, receiver on dedicated
MVBC will reply with a signal asking for retransmission of
the first packet. However, the source MVBC could be trapped
into a deadlock without issuing the retransmission, because
the original wrong guard is not satisfied.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

3888 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 6, JUNE 2021

Moreover, the second bug corresponding to the violation
of the fourth property is tracked to C statement {expected :=
NK_seq_nr; send_not_yet := (expected + credit) % 8;} con-
tained in the action of transition for data retransmission, which
is also located in table 33 of the standard IEC 61375. In this
buggy scenario, the system fails to update the value of packet
number to be retransmitted. To fix the bug, the statement needs
to be changed to ({ expected := NK_seq_nr; send_not_yet
:= (expected + credit) % 8; next_send := expected;}). The
physical problem corresponding with this bug occurs when
the second packet is lost. In that case, receiver on the dedicated
MVB controller will also reply with a number asking for
retransmission of the lost packet 2. However, source MVB
controller will mistakenly retransmit packet 3 when receiving
the retransmission signal. Besides these two bugs, another
four bugs about data transmission of table 33 and some
ambiguousness about master controller transfer of workflow
Figure 105 contained in the original IEC standard are detected,
and have been confirmed by the IEC organization, and will be
revised in the coming updated version. By fixing the bugs,
we make modified MVBChart model pass verification.

V. CONCLUSION

In this paper, we propose a design framework named
TooMVBC using MVBChart computation model to capture
specification of MVBC systems at high level. The specification
model MVBChart offers modeling capabilities of major fea-
tures of MVBC systems with both hardware and software com-
ponents, data flow and control flow behaviors, memory control
etc. Formal semantics of MVBChart for co-simulation and co-
synthesis are proposed to overcome the gap between model
and implementation. Graphical model validation through sim-
ulation and verification can help uncover design defects much
easier at early stage of the development cycle. As mentioned
in experiments, several critical bugs and some ambiguousness
are located in the IEC standard by using TooMVBC. After all
properties are satisfied in design, we can leverage TooMVBC
to generate executable C and VHDL implementations from
the validated model automatically according to the partitioning
result. With those predefined libraries consisting of 36 general
modules of MVBC domain features, different types of MVBC
can be modeled rapidly and can be dynamically implemented
according to different partitioning strategy. Generated code
can be synthesized into corresponding processors on the
proposed MVBC platform for execution with little manual
work. Besides, based on those basic primitives, the framework
can also be applied to the design of some data processing and
control systems.

A. Discussion and Future Work

(1) Currently, its reuse model libraries such as encoder
module, decoder module, and memory control etc are mainly
for MVBC, we will use the basic primitives to build more
libraries to support the design of more complex controllers
such as WTBC. Also, we will integrate more features to
extend the ability of the basic primitives such as continues
differential equation for function modeling. (2) Verification

ability of MVBChart relies on the capability of Beagle, which
supports computation tree logic assentations, and automatical
trace back tool for counterexample of Beagle to trace of
MVBChart would be researched. (3) The correctness of the
code generation algorithm needs to be proved. Semantics
preserving code generation, which has not been formally
proved in existing tools yet, is a very hard but important
research topic.

REFERENCES

[1] R. Alur, “Timed automata,” in Computing Aided Verification. Berlin,
Germany: Springer, 1999, p. 688.

[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli , “Metropolis: An integrated electronic sys-
tem design environment,” Computer, vol. 36, no. 4, pp. 45–52,
Apr. 2003.

[3] Berry, “Scade-synchoronous design and validation of embedded control
software,” in Proc. Workshop Next Gener. Design Verification Methodol.
Distrib. Embedded Control Syst. New Delhi, India: Springer, 2007,
pp. 19–33.

[4] IEC 61375-1, Train Commun. Netw., Geneva, Switzerland, 2011.
[5] F. He, L. Yin, and B.-Y. Wang, “VCS: A verifier for component-based

system,” Tsinghua Univ., Beijing, China, Tech. Rep. 2013-01-0092,
Oct. 2013.

[6] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” ACM SIGPLAN Notices, vol. 37, pp. 58–70, Oct. 2002.

[7] X. Iturbe, A. Zuloaga, J. Jiménez, J. Lázaro, and J. L. Martín,
“A novel soc architecture for a mvb slave node,” in Proc. Annu. Conf.
Ind. Electron., Nov. 2008, pp. 1455–1460.

[8] Y. Jiang and etc, “Design of mixed synchronous/asynchronous systems
with multiple clocks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8,
pp. 2220–2232, Aug. 2014.

[9] Y. Jiang et al., “From stateflow simulation to verified implementation:
A verification approach and a real-time train controller design,” in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Dec. 2016,
pp. 1–11.

[10] Y. Jiang et al., “Uncertain model and algorithm for hardware/software
partitioning,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Oct. 2012,
pp. 243–248.

[11] Y. Jiang, H. Zhang, X. Song, W. Hung, M. Gu, and J. Sun, “Verification
and implementation of the protocol standard in train control system,” in
Proc. 37th Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2014,
pp. 549–558.

[12] J. Jimenez, J. L. Martin, U. Bidarte, A. Astarloa, and A. Zuloaga,
“Design of a master device for the multifunction vehicle bus,” IEEE
Trans. Veh. Technol., vol. 56, no. 6, pp. 3695–3708, Nov. 2007.

[13] J. Lee, J. Hwang, and G. Park, “Performance evaluation and verification
of communication protocol for railway signaling systems,” Comput.
Standards Interface, vol. 27, no. 3, pp. 207–219, Mar. 2005.

[14] J.-H. Lee, J.-G. Hwang, D. Shin, K.-M. Lee, and S.-U. Kim, “Develop-
ment of verification and conformance testing tools for a railway signaling
communication protocol,” Comput. Standards Interface, vol. 31, no. 2,
pp. 362–371, Feb. 2009.

[15] Z. Li et al., “Design and optimization of multiclocked embedded systems
using formal techniques,” IEEE Trans. Ind. Electron., vol. 62, no. 2,
pp. 1270–1278, Feb. 2014.

[16] Z. Li, F. Yang, and Q. Xing, “Design of multifunction vehicle bus
controller,” in Computer and Computing Technologies in Agriculture.
New York, NY, USA: Springer, 2010, pp. 177–183.

[17] H. Ma, H. Zhang, and M. Gu, “Heterogeneous model merging based on
model transformation,” Int. J. Model. Optim., vol. 6, no. 1, p. 39, 2016.

[18] R. Aarthipriya and S. Chitrapreyanka, “Fpga implementation of mul-
tifunction vehicle bus controller with class 2 interface and verifica-
tion using beaglebone black,” Int. J. Sci. Eng. Res., vol. 3, no. 5,
pp. 3221–3225, 2015.

[19] I. Sander and A. Jantsch, “System modeling and transformational design
refinement in ForSyDe,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 23, no. 1, pp. 17–32, Jan. 2004.

[20] S. G. Shon and H. J. Byun, “Design and implementation of embedded
MVB-ethernet interface,” in Proc. ACM Symp. Res. Appl. Comput., 2011,
pp. 93–96.

[21] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards flexible verifi-
cation under fairness,” in Proc. Int. Conf. Comput. Aided Verification.
Paris, France: Springer, 2009, pp. 709–714.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FORMAL DESIGN OF MULTI-FUNCTION VEHICLE BUS CONTROLLER 3889

[22] R. Whitfield et al., “System and method for automatic train operation,”
U.S. Patent 6 135 396, Oct. 24, 2000.

[23] H. Zhang, Y. Jiang, H. Liu, H. Zhang, M. Gu, and J. Sun, “Model driven
design of heterogeneous synchronous embedded systems,” in Proc.
31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Oct. 2016,
pp. 774–779.

[24] H. Zhang, Y. Jiang, X. Song, W. N. Hung, M. Gu, and J. Sun,
“Tsmart-galsblock: A toolkit for modeling, validation, and synthesis of
multi-clocked embedded systems,” in Proc. Found. Softw. Eng., 2014,
pp. 711–714.

Yu Jiang received the B.S. degree in software
engineering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2010, and
the Ph.D. degree in computer science from Tsinghua
University, Beijing, in 2015. He was a Post-Doctoral
Researcher with the Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 2016. He is currently an
Associate Professor with Tsinghua University. His
current research interests include domain specific
modeling, formal computation model, formal veri-

fication, and their applications in embedded systems.

Mingzhe Wang received the B.S. degree in software
engineering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2018. He is
currently pursuing the Ph.D. degree with the School
of Software Engineering, Tsinghua University,
Beijing. His research interests include software
testing, mainly focusing on fuzzing of distributed
systems.

Zhuo Su received the B.S. degree in software engi-
neering from Northeast University, Shenyang, China,
in 2018. He is currently pursuing the Ph.D. degree
with the School of Software Engineering, Tsinghua
University, Beijing, China. His research interests
include model driven design and code synthesis.

Yixiao Yang received the B.S. degree in soft-
ware engineering from Nanjing University, Nanjing,
China, in 2015, and the Ph.D. degree from the
School of Software Engineering, Tsinghua Univer-
sity, Beijing, China, in 2020. He is currently a
Post-Doctoral Researcher with the School of Soft-
ware Engineering, Tsinghua University. His research
interest includes software testing, mainly focusing
on model based embedded software testing.

Huihui Wang (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
University of Virginia, Charlottesville, VA, USA,
in August 2013. In August 2013, she joined the
Department of Engineering, Jacksonville University,
Jacksonville, FL, USA, where she is currently an
Associate Professor and the Founding Chair of the
Department of Engineering. In 2011, she was an
Engineering Intern with Qualcomm, Inc. She is the
author of more than 50 articles and holds one U.S.
patent. Her research interests include cyber-physical

systems, the Internet of Things, healthcare and medical engineering based on
smart materials, robotics, haptics based on smart materials/structures, ionic
polymer metallic composites, and microelectromechanical systems.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 25,2022 at 17:12:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

